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1. Introduction 

The analysis and prediction of the trajectory of projectiles has been a subject investigated for 
many centuries and is still a topic of interest today.  The interest and advancement of the problem 
has come from two fields:  mathematics and physics.  As a mathematical problem, the focus has 
been on the methods for solution of the governing equations.  Some of the most noted 
mathematicians and physicists of the past several centuries, such as Galileo, Bernoulli, and 
Euler, have investigated the mathematical solution of this problem and have obtained technical 
advances important for trajectory prediction.  To accurately determine the trajectory of a 
projectile, one must also properly account for the physical effects such as gravity and the air 
resistance or drag of the projectile.  In additional to his laws of motion, Newton has also been 
credited for the development of the quadratic law of resistance characterizing the aerodynamic 
drag of a body.  Further advances have shown that more sophisticated characterization of the 
drag is required to predict the trajectory across the complete flight regime of many projectiles.   

Over a century ago, Mayevski found that it was possible to express the drag of a projectile as 
proportional to a power of the velocity within restricted velocity regimes (1).  This has been 
described as the Mayevski Law of Resistance (2).  Piecing together the drag in adjacent velocity 
regimes using this approach allowed the drag to be characterized over the complete flight 
regime.  Mayevski’s advance led to further developments in trajectory prediction methods.  
One of the more famous methods is the Siacci method.  (McCoy [3] contains a detailed 
description of the Siacci method along with additional bibliographic information.)  The Siacci 
method was widely used to predict the flat-fire trajectories for decades after its initial 
development.  The method still has some adherents in the sporting and ammunition 
community (3). 

With the advent of the computer, the Siacci method has been replaced by more modern 
numerical methods.  These methods allow rapid and accurate computation of the projectile’s 
trajectory provided the physical characteristics of the projectile (such as the drag) and the 
atmosphere are appropriately modeled.  Modern aerodynamic analysis and trajectory programs 
such as Prodas (4) and AP02 (5) provide an excellent means of accurately determining the flight 
behavior of specific designs. 

The increased sophistication of trajectory prediction methods has some unfortunate 
consequences.  The user must often provide an array of details that may or may not be relevant to 
the answer that is being sought.  Additionally, these methods often obscure critical insights into 
the relationship between important parameters that produce the physical behavior of interest.  For 
example, there are occasions where the aeroballistician would like to be able to predict aspects of 
the flight trajectory without completely defining the geometry or aerodynamic characteristics of 
a projectile, such as in preliminary design or experimental testing.  In these cases, simplified 
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analyses can provide accurate results with the minimum amount of relevant input from the user 
and provide the designer with a clearer understanding of the primary design variables. 

For high-velocity direct-fire munitions, it is possible to define aspects of the flight trajectory 
using simple analytical expressions based on the flat-fire point-mass trajectory equations using a 
power-law drag relation.  Texts on exterior ballistics (3, 6, and 7) include some of these 
solutions, although their original source is somewhat unclear.  From a mathematical perspective, 
these closed-form solutions can be obtained using routine analytical methods for solving 
ordinary differential equations.  McCoy (3) provides a detailed explanation of the flat-fire 
assumption and the resulting simplified equations of motion.  McCoy (3) also provides solutions 
of the trajectory equations for three special cases including the variation of the drag coefficient 
with the inverse of the Mach number, the variation of the drag coefficient with the inverse of the 
square root of the Mach number, and for constant drag coefficient.  The later two solutions were 
previously published by McShane et al. (6). 

Solutions of the flat-fire equations of motion using a power-law drag relation with a variable 
parameter for the power-law exponent have also been obtained (7–9).  These solutions were an 
important component of early implementations of the Siacci method (8, 9).  The previously 
mentioned solution (3, 6) where the drag varies with the inverse of the square root of the Mach 
number is also a special case of the more general solution which allow a variable power-law 
exponent. 

Using these solutions, it can be shown that the projectile trajectory and velocity history can be 
characterized in terms of three parameters: the projectile’s muzzle velocity, a parameter related 
to the muzzle retardation, and a single parameter defining the shape of the drag curve.  
Characterizing the trajectory in terms of these parameters has been shown previously by other 
investigators (7, 10), although the particular definition of the parameters related to the muzzle 
retardation differ somewhat from the definition used here.  It is believed that the definition used 
here may be more appropriate for modern high-velocity munitions.  Using these three 
parameters, a wide range of trajectory characteristics can be determined, including the velocity-
time-range relationships, the wind sensitivity of the projectile, gravity drop, gun elevation angle 
to hit a target at range, and the sensitivity of the vertical impact location to changes in muzzle 
velocity and projectile drag coefficient or retardation.  The results presented here also show that 
trajectory parameters can be scaled using the muzzle velocity and muzzle retardation allowing 
the various trajectory characteristics to be presented as a universal family of curves valid for a 
wide range of munition types and sizes. 

These relations can be developed using the point-mass equations of motion.  These equations of 
motion are obtained from Newton’s second law.  The flat-fire point-mass equations also assume 
that the transverse aerodynamic forces such as the lift and Magnus forces are small and that the 
Coriolis acceleration due to the earth’s rotation can be neglected.  Neglecting the transverse 
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aerodynamic forces is typically a good assumption if the total yaw of the projectile is small.  The 
point-mass equations of motion for a projectile are written as follows:   

 
V

VCSV
2
1

dt
dVm x

Dref
2x ρ−= . (1) 

 mg
V
V

CSV
2
1

dt
dV

m y
Dref

2y −−= ρ . (2) 

 x
x V

dt
ds

= . (3) 

 y
y V

dt
ds

= . (4) 

The initial conditions are  

 000x cosV)tt(V θ== , (5) 

 000y sinV)tt(V θ== , (6) 

 0x0x s)tt(s == , (7) 

and 

 
0y0y s)tt(s == . (8) 

The current report presents analytical solutions based on approximations valid for high velocity 
direct-fire or flat-fire munitions.  The flat-fire assumption allows the point-mass equations, 
which are, in the general case, nonlinear and coupled, to be decoupled and solved independently.  
By considering high velocity supersonic flight, the drag coefficient can be modeled as a simple 
function of the Mach number.  The particular functional form of the drag coefficient allows 
variations in the shape of the drag curve to be considered parametrically. 

In this report, discussion of the functional form for the drag coefficient is first presented along 
with parametric values defining the drag curves for current munitions.   The point-mass 
equations are then combined to yield equations in terms of the total velocity of the projectile.  
These equations are described here as the 1-DOF (degree of freedom) point-mass equations.  
Using the functional form for the drag coefficient, analytical solutions for the 1-DOF point-mass 
equations are presented.  Using these results, the solutions of the 2-DOF point-mass equations 
(equations 1–8) are then presented.  The approach is then validated by comparing the results 
obtained from the analytic method with numerical trajectory predictions made using actual drag 
data. 
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2. Functional Form for the Drag Coefficient 

The solution of the equations of motion requires the projectile drag to be defined.  For a fixed 
geometry, the drag coefficient is a function of the nondimensional flight velocity or Mach 
number.  (The drag coefficient may also be considered to exhibit some dependence on the 
Reynolds number; however, it is assumed here that the Reynolds number based on the freestream 
speed of sound is constant and the effects of Reynolds number are implicitly included in the drag 
coefficient variation with Mach number.  The drag coefficient can also depend on the wall 
temperature.  Nominal wall temperature effects are considered to be implicitly included in the 
drag coefficient and variations from the nominal conditions are not considered here.)  A typical 
drag curve is shown schematically in figure 1.  There are three critical regions on the drag curve.  
In the subsonic region (M < 0.8), the drag coefficient is relatively constant.  In the transonic 
regime (0.8 < M < 1.2), the drag coefficient is characterized by a sharp rise with increasing Mach 
number.  In the supersonic region, the drag coefficient decreases in an asymptotic manner as the 
Mach number increases.  To accurately predict the projectile velocity as a function of range or 
time across the entire flight regime, the entire drag curve must be utilized.  However, in many 
cases, only the supersonic flight regime may be of interest, and a simplified form of the drag 
curve may be utilized. 

Figure 1.  Schematic of a typical drag curve. 
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As previously discussed, Mayevski found that it was possible to express the drag of a projectile 
as proportional to a power of the velocity within restricted velocity regimes (1).  Such an 
approach has been adopted here.  Other researchers have noted similar behavior of the drag 
coefficient in the supersonic regime.  Thomas (11) reported that several researchers noted that 
the behavior of the drag coefficient of some projectiles in the supersonic regime varies with the 
inverse of the square root of the Mach number.  This has been described as the “3/2” law of 
resistance as the dimensional drag varies with the 3/2 power using this form of the drag 
coefficient.  Thomas also proposed his own form of the drag coefficient in the supersonic 
regime.   However, the approach has gained little acceptance and its implementation in the 
context of the analysis presented here adds additional complexity that is not warranted.   

More recently, Celmins (12) noted that the velocity decay or retardation of many high-velocity 
munitions was relatively constant and conjectured that the supersonic drag coefficient of many 
projectiles appears to vary with the inverse of the Mach number above Mach 2.5.  Further 
investigation performed as part of the current study suggests that a more general power-law drag 
law can be utilized which improves the accuracy of the trajectory simulations and highlights the 
relative insensitivity of the results to this generalized form. 

In the current investigation, the drag coefficient is assumed to vary with the inverse of the 
velocity (or Mach number) raised to a power “n” as shown in equation 9. 

 nnD
V
1

M
1C ∝∝ . (9) 

The Mach number and velocity are proportional to each other for a constant freestream speed of 
sound.  In the context of the current analysis, a constant freestream speed of sound is expected 
due to the fixed atmospheric conditions encountered in flat fire.  Using this functional form, the 
drag coefficient can be expressed in terms of the launch drag coefficient 

0
D V

C  and the ratio of 

the instantaneous velocity V  to the muzzle velocity 0V . 

 
n

0
0VDD V

V
CC ⎟

⎠
⎞

⎜
⎝
⎛= . (10) 

Modeling the drag in this fashion does not allow the yaw drag effect to be considered unless it is 
implicitly part of the drag curve.  To define the possible range of exponents, U.S. Army firing 
tables “aeropack” data for a variety of gun-launched munitions was utilized.  This data contains 
the drag coefficient data used to develop firing tables for U.S. Army munitions and represents a 
definitive source of drag data based on the most current data available.  Table 1 presents the drag 
coefficient exponent determined for various munitions.  This exponent represents the best fits of 
the drag data over the range between the muzzle velocity and Mach 2.5.  Curve fits were also 
performed over the entire supersonic regime, and some slight differences (typically a slight 
decrease) in the drag coefficient exponent were noted.  However, it was determined that for 
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many of the munitions currently of interest, the projectile velocity did not decrease below 
Mach 2.5 over the effective range of the projectile and only the representative exponent for this 
range of velocities is shown here.   

Table 1.  Drag coefficient exponents for various munitions. 

Munition Caliber
(mm) 

Geometry Exponent 

M829 120 Cone-cylinder-fins 0.89 
M829A1 120 Cone-cylinder-fins 0.80 
M830A1 120 Cone-cylinder-tailboom 0.74 
M865PIP 120 Cone-cylinder-flare 0.92 
M865E3 120 Cone-cylinder-flare 0.78 
XM1002 120 Cone-cylinder-flare 0.82 
M791 25 Cone-cylinder-boattail 0.99 
M193 5.56 Ogive-cylinder-boattail 0.40 
M392A2 105 Ogive-cylinder-boattail 0.58 

A variety of munitions were selected in the results presented in table 1 based on differences in 
their shapes and sizes.  The exponents varied between 0.40 and 0.99, with the mean about 0.77.  
Clearly, the drag coefficient exponent is dependent on the munition type and the drag does not 
vary with the inverse of the Mach number as suggested by Celmins (12). 

The results of analyzing the drag curves for each of these munitions indicate that the drag can 
accurately be represented by the form shown in equation 10.  For example, the drag curve for the 
M829 kinetic energy projectile is shown in figure 2.  Over the range between the muzzle velocity 
(M = 4.85) and M = 2.5, the drag curve is well represented by the form shown in equation 10 
with the exponent of n = 0.89.  If the curve is further extrapolated below M = 2.5, some 
additional error is noted.  These errors can be addressed with alternative fits to the data curve.  
However, this fit should be sufficient over the effective range of this munition. 

Another source of drag data which is available to examine the variation of the drag coefficient 
with Mach number is the standard axisymmetric projectile shapes that were tested in the early to 
mid-1900’s.  The resulting drag curves are referred to as the Ingalls, G1, G2, G5, G6, G7, and 
G8 drag curves.  McCoy (3) contains a compilation of each of these drag function along with a 
tabulation of the drag curve for spherical projectiles.  Using this set of data, the exponent 
defining the shape of the drag variation with Mach number was determined from a least-squares 
fit of the drag data over the range between Mach 1.5 and 3.0 in a manner similar to that 
previously described.  The resulting exponents are shown in table 2. 

The Ingalls and G1 drag functions represent the drag curve for the same projectile geometry, but 
represent two interpretations of the drag data.  Both drag functions are similar over the Mach 1.5 
to 3.0 interval and have the same exponent representing the shape of the drag curve.  Above 
Mach 3, both drag coefficient variations diverge somewhat with the G1 drag function showing 
much less of a variation with Mach number.  The Ingalls drag function shows a variation above  
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Figure 2.  Fit of drag coefficient for the M829. 

Table 2.  Drag coefficient exponents for various drag functions. 

Drag Function Geometry Exponent 
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exponents shown previously in table 1.  The spherical projectile shows relatively little variation 
drag coefficient in the supersonic regime as represented by the low value of the drag coefficient 
exponent. 

3. Solution of the 1-DOF Equations 

The point-mass equations shown previously in equations 1–8 are useful for predicting the 
ballistic trajectory of a projectile.  However, there are instances where the total velocity rather 
than the two-dimensional velocity components is desired.  In this case, the point-mass equations 
can be recast in terms of the total projectile velocity V. 

 2
y

2
x VVV += . (11) 

 
V
V

mgCSV
2
1

dt
dVm y

Dref
2 −−= ρ . (12) 

The presence of the vertical velocity component Vy  in equation 12 requires an additional 

equation (equation 2, for instance) to obtain a complete set of equations.  For flat fire, the gravity 
term in equation 12 is much smaller than the drag term and can be ignored as shown: 

 Dref
2 CSV

2
1

dt
dVm ρ−= . (13) 

The result is a single equation which can be solved for the total velocity provided that the 
functional form for the drag coefficient is known.  In many practical situations, if the gun 
elevation is less than 10°, equation 13 provides accurate evaluations of the total velocity.  This 
implies that the velocity history itself is independent of gun elevation under these same 
conditions. 

The arc length along the flight path, s, is related to the total velocity of the projectile V by the 
following differential equation: 

 V
dt
ds

= . (14) 

However, the arc length is not normally a quantity used in describing the projectile trajectory.  A 
more convenient coordinate is the horizontal range coordinate xs .  For flat-fire trajectories, the 
horizontal range coordinate is nearly equal to the arc length and the approximations shown in 
equations 15 and 16 can be made with little loss of accuracy. 

 xss ≅ . (15) 
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V

dt
dsx ≅ .

 (16) 

Equations 13 and 16 are referred to as the 1-DOF equations.  

Using equation 16 and applying the chain rule, an alternative form of equation 13 can be 
obtained that is useful in determining the total velocity as a function of range. 
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x
CSV
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The functional form of the drag coefficient presented previously in equation 10 can be 
substituted into equations 13 and 17 to obtain the following equations of motion: 
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Here, 
0ds

dV
⎟
⎠
⎞

⎜
⎝
⎛ is the retardation (or velocity fall-off) of the projectile evaluated at the muzzle.  

The muzzle retardation is related to the drag coefficient as shown in equation 20. 

 
0VDref0
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CSV
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It is important to note that the form of equations 18 and 19 shows that the velocity history of the 
projectile can be characterized in terms of three parameters:  the muzzle velocity, the muzzle 
retardation, and the exponent characterizing the shape of the drag curve. 

3.1 Velocity-Time-Range Relations 

Equations 18 and 19 can be integrated to obtain closed form solutions of the governing 
equations.  These are shown as follows: 
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The validity of these solutions is limited to regimes where the power-law drag variation is 
applicable.  Generally, for munitions launched at supersonic velocities, these equations are only 
applicable at velocities above the sonic velocity because of the distinct change in the drag 
variation near Mach 1, as seen previously in figure 1.  Further restrictions on the velocity regime 
where these equations are valid may be imposed by the applicability of a particular power-law 
drag variation, as demonstrated previously in figure 2.  By considering the physical 
considerations and practical limitations of these equations, the mathematical limitations that 
require the bracketed quantities in equations 21 and 23 to be positive to obtain real number 
solutions can be ignored because they are less restrictive than the physical considerations.  It 
should also be recognized that the constant drag coefficient results (n = 0) are representative of 
the drag variation in the subsonic regime and these equations can be applied here without the 
mathematical difficulties previously discussed. 

The results in equations 21 and 23 represent the general solutions from which equations 22 and 
24, respectively, can be obtained as mathematical limiting cases.  These special cases are 
presented explicitly here (and throughout the report) for completeness, although accurate results 
can also be obtained for the n = 0 or n = 1 cases using the general solutions with n = 0.01 or  
n = 0.99, respectively. 

Equations relating range to time can be easily obtained by combining equations 21–24. 
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Similarly, equations for the range as a function time can be derived and are shown in equations 
28–30. 
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The results presented in equations 21–30 again show that the velocity, range, and time-of-flight 
are functions of just three parameters:  the muzzle velocity, the muzzle retardation, and the 
exponent defining the shape of the drag curve.  The results also show that the velocity can be 
nondimensionalized by the muzzle velocity, the range can be nondimensionalized by the ratio of 
the muzzle velocity to the muzzle retardation, and the time-of-flight can be nondimensionalized 
by the muzzle retardation.  This scaling of the results in terms of these nondimensional 
parameters produces a family of curves in terms of a single parameter, the exponent defining the 
shape of the drag curve. 

Although equations 21 and 22 are compact, a useful expression can be developed using a 
Taylor’s series expansion.  The expansion is valid for all values of the drag coefficient exponent 
and represents the exact solutions presented in equations 21 and 22 as a single equation. 
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j! ds V
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 (31)

 

As can be seen from equation 31, the fractional remaining velocity is to first order in range a 
function of the retardation at the muzzle and does not depend on the shape of the drag curve.  
The shape of the drag curve only affects the second order and higher terms of the expansion.  It 
is also noted that the first j + 1 terms of the expansion represent the exact solution for j/1M/1  
variations in the drag coefficient.  The first three terms of the expansion provide excellent 
accuracy when the exponent for the drag coefficient variation is 0.5 n 1.25≤ ≤ and the velocity is 
between 5.0V/V1 0 ≥≥ .  This range of exponents appears to represent typical values for 
supersonic projectile applications.  For applications where the velocity or drag coefficient 
exponent is outside this range, accurate solutions can be obtained with additional higher order 
terms if necessary.
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Figures 3 and 4 show the fractional remaining velocity as a function of the scaled range for 
various values of the drag coefficient exponent.  For reference, the scaled and dimensional 
ranges for various notional munition types is shown in table 3.  For example, the scaled range of 
0.5 corresponds to a range of 13.3 km for a muzzle velocity of 1600 m/s and a retardation of 
60 (m/s)/km, which are representative values for modern kinetic energy projectiles.  Figures 3 
and 4 show the relative effect of the drag coefficient exponent on the velocity decay for a range 
of exponents from 1/ M  (n = 1) to constant drag coefficient (n = 0).  The 1/ M drag coefficient 
variation shows a linear variation of the velocity decay with range.  For values of the exponent 
less than 1, the rate of velocity decay decreases with distance downrange.   

Figure 3.  Fractional remaining velocity as a function of scaled range. 

For the representative muzzle velocity of 1600 m/s and a retardation of 60 (m/s)/km, the results 
shown that at 3 km the fractional remaining velocity is 0.888 and 0.894 when the drag coefficient 
varies with 1/ M  (n = 1) or when the drag coefficient is constant (n = 0), respectively.  At 5 km, 
the fractional remaining velocities decrease to 0.815 and 0.829, for n = 1 and n = 0, respectively.  
For rounds with these characteristics, it does not appear that shape of the drag curve as defined 
by the drag coefficient exponent is particularly critical in modeling the velocity decay of the 
projectile, as reasonable accuracy can be obtained by assuming a constant retardation over ranges 
of up to 5 km. 
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Figure 4.  Fractional remaining velocity as a function of scaled range (close-up). 

Table 3.  Nondimensional ranges for various notional round types. 

Notional 
Round 
Type 

 

 
Muzzle 
Velocity 

(m/s) 

 
Muzzle 

Retardation 
([m/s]/km) 

 
Dimensional 

Range  
(km) 

Nondimensional Range 

0

0xx

0 V
)ss(

ds
dV −

⎟
⎠
⎞

⎜
⎝
⎛−  

3 0.1125 
5 0.1875 

KE 1600 60 

13 0.4875 
1 0.2 HEAT 1100 220 
2.5 0.5 
1 0.2 KE trainer 1700 340 
2.5 0.5 
0.2 0.2 Small arms 1000 1000 
0.5 0.5 

For training ammunition or high-explosive antitank (HEAT) rounds that have higher retardation, 
the velocity decay occurs over shorter ranges and the effect of the drag coefficient variation is 
more apparent.  For a notional training munition with a muzzle velocity of 1700 m/s and a 
retardation of 340 (m/s)/km or a notional HEAT round with a muzzle velocity of 1100 m/s and a 
retardation of 220 (m/s)/km, the fractional remaining velocity is 0.8 and 0.819 at 1 km and 0.5 
and 0.607 at 2.5 km when drag coefficient varies with 1/ M  (n = 1) or when the drag coefficient 
is constant (n = 0), respectively.  It should be noted that a constant drag coefficient (n = 0) 
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represents an extreme case and the differences in most practical situations will likely be even less 
if a better estimate of the drag coefficient exponent is available. 

The results shown in equation 31 and figures 3 and 4 also explain some of the conjectures 
regarding the drag behavior of high-velocity projectiles made by Celmins (12).  These 
conjectures were based on the velocity vs. range data.  The velocity vs. range data examined by 
Celmins showed a nearly constant rate of decrease in velocity with increasing range which is 
consistent with a drag coefficient that varies with the inverse of the Mach number.  However, the 
results shown here demonstrate that velocity variation with range is relatively insensitive to the 
shape of the drag curve.  In fact, for many projectiles, it may be very difficult to distinguish the 
effect of the drag coefficient exponent on the velocity history over the effective range of the 
projectile. 

The Taylor’s series expansion of the velocity shown in equation 31 also provides a convenient 
form for use in analyzing data obtained from range testing.  If the variation of the projectile 
velocity with range is available (from radar data, for instance), equation 31 provides a convenient 
form for polynomial curve fitting so that the velocity history can be extrapolated to longer 
ranges.  Using a second-order polynomial fit of the form, 

 2
1 x x0 2 x x0

0

V 1 a (s s ) a (s s )
V

= + − + − , (32) 

allows the muzzle retardation and shape of the drag curve to be determined from the coefficient 
1a  and 2a . 

 
1

0

0 a
V

ds
dV

=⎟
⎠
⎞

⎜
⎝
⎛ . (33) 

 2
1

2

a
a21n −= . (34) 

Some caution should be applied if polynomials higher than second order are utilized because 
there are only three independent parameters describing the velocity history and the higher-order 
coefficients are not independent.  If higher-order polynomials are used, the coefficients of the 
higher-order terms should be cast in terms of the three parameters as shown in equation 31 so 
that the curve fitting is consistent with the form shown in equation 31.  The curve fitting, as well 
as any extrapolation of the results to longer ranges, must also be performed in the supersonic 
regime where the variation of the drag coefficient can be represented by the functional form 
shown in equation 10. 

The variation of retardation with range can be determined from the variation of velocity with 
range as shown in equation 35. 
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An alternative form of the variation of the retardation with range can be obtained from 
equation 35 by taking the derivative of the velocity with respect to range to obtain the following 
expression. 
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As shown in equation 36, the retardation is constant throughout the trajectory for a drag 
coefficient exponent of one.  The drag coefficient exponent appears in the first order and higher 
terms of the expansion.  Thus, the relative importance of the shape of the drag curve should be 
more apparent in the retardation than in the velocity history.  Of course, this would be expected 
since the drag coefficient is directly related to the retardation as shown in equation 20. 

Figure 5 shows the variation of retardation with range for various values of the drag coefficients 
exponent.  As previously noted, the retardation is constant with range for a drag coefficient 
exponent of one.  For drag coefficient exponents less than one, the retardation decreases with 
increasing range. 

The definition of retardation used in equations 20 and 35 is widely accepted at this point in time, 
although alternative definitions of retardation exist in the literature.  More traditional texts (8, 13) 
often define the retardation as shown in equation 37. 
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This is essentially the ratio of the drag force to the mass and represents the change in velocity per 
unit time of flight.  Generally speaking, this form of the retardation is a function of the flight 
velocity across the flight regime.  Because of its strong dependence on velocity, this parameter is 
less useful in characterizing the flight characteristics of a munition than the definition in 
equation 20. 

Other references (7, 9) utilize a retardation coefficient that has a form (or its reciprocal) shown in 
equation 38. 
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Figure 5.  Retardation as a function of scaled range. 

 
n

0

0
Dref V

V
ds
dVCS

m2
1

ds
dV

V
1R̂ ⎟

⎠

⎞
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛==⎟

⎠
⎞

⎜
⎝
⎛= ρ . (38) 

The retardation shown in equation 38 presents the retardation in terms of a fractional (or 
percentage if multiplied by 100) loss in velocity per unit length of travel.  This form of the 
retardation is independent of velocity for a constant drag coefficient and perhaps is more 
appropriate as a parameter characterizing the munition in the subsonic regime where the drag 
coefficient is relatively constant. 

While it is possible to use any of the three definitions of retardation as a means of characterizing 
munition performance, for the munitions examined here, the drag coefficient exponent was 
closer to one than zero.  The muzzle retardation obtained using equation 20 is less sensitive to 
velocity than the other two definitions of retardation and is perhaps more representative of the 
performance of the projectile than the other two definitions.  For point designs where the muzzle 
velocity and muzzle retardation are fixed, this is perhaps a minor point as the trajectory equations 
can be normalized by any of the three forms of muzzle retardation and the predicted results will 
be identical.  However, when the variation in performance with muzzle velocity is required, it is 
better to choose the definition of retardation with the least sensitivity to velocity.   
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The time-range relationships in equations 25–27 can also be expanded in a Taylor’s series as 
shown in equation 39. 
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Equation 39 shows that first two terms of the expansion are independent of the shape of the drag 
curve, and the drag coefficient exponent only appears in the cubic and higher-order terms. 

Figures 6 and 7 show the scaled time-of-flight as a function of range for various values of the 
drag coefficient exponent.  The time-of-flight is only modestly effected by the drag coefficient 
variation.  For the nominal kinetic energy projectile muzzle velocity and retardation (1600 m/s 
and 60 [m/s]/km), the time of flight to 5 km is 3.461 s and 3.437 s for a range of exponents that 
varies from M/1  (n = 1) to constant drag coefficient (n = 0).  For comparison, the time-of-flight 
to 5 km is 2.941 s for a hypothetical projectile with zero drag (vacuum trajectory).  Thus, the 
muzzle retardation is seen to have a more important influence on the time-of-flight than the drag 
coefficient exponent.  As seen before, the effect of drag variation is more apparent for rounds 
with higher retardation such as training ammunition or HEAT rounds.  For typical training 
ammunition (muzzle velocity of 1700 m/s and retardation of 220 [m/s]/km), the time of flight to 
2.5 km is 2.039 s and 1.908 s, when drag coefficient varies with M/1  (n = 1) or when the drag 
coefficient is constant (n = 0), respectively.  The time of flight is proportionally the same for the 
nominal HEAT round (muzzle velocity of 1100 m/s and retardation of 340 [m/s]/km), 3.15 s and 
2.95 s, although the time of flight longer because of the lower muzzle velocity. 

3.2 Change in Impact Velocity and Time-of-Flight Due to Change in Muzzle Velocity 

The velocity-range relations previously shown (equations 21, 22, and 31) can be used to derive 
other important relations.  For instance, changes in muzzle velocity produce changes in the 
impact velocity on the target downrange.  Whether these changes are produced by design 
modifications or are part of the experimentally observed muzzle velocity variability observed in 
the experimental testing, it is important to be able to predict the resulting change in the impact 
velocity due to changes in muzzle velocity.  The velocity-range relations can be used to 
determine the variation in impact velocities due to changes in muzzle velocity.  Using the 
velocity-range relations in equations 21 and 22, it can be shown that the change in impact 
velocity with change in muzzle velocity for a fixed range has the form shown in equation 40.  

.
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Figure 6.  Scaled time-of-flight as a function of scaled range. 

Figure 7.  Scaled time-of-flight as a function of scaled range (close-up).
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This allows the change in impact velocity with change in muzzle velocity to be easily computed 
using the existing velocity relationships shown in equations 21 and 22. 
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Using the Taylor’s series expansion form in equation 31, the variation in impact velocity with 
changes in muzzle velocity can also be obtained in the form shown in equation 41. 
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It is noted that this expansion is equivalent to the expansion for the change in retardation with 
change in range previously shown in equation 33, by virtue of the chain rule for derivatives. 

Figure 8 shows the variation in impact velocity with changes in muzzle velocity as a function of 
scaled range for several values of the drag coefficient exponent.  The results show that when the 
drag varies with the inverse of the Mach number (n = 1), a 1-m/s increase in muzzle velocity 
produces a 1-m/s increase in impact velocity for all ranges.  When the exponent is less than one, 
changes in muzzle velocity produce slightly less than a one to one change in the impact 
velocities with the effect increasing with range.  For the hypothetical kinetic energy projectile 
(muzzle velocity of 1600 m/s and a retardation of 60 [m/s]/km), the results show that at 3 km the 
change in the impact velocity is 94% of the increase in the muzzle velocity for an drag 
coefficient exponent of 0.5.  The change in muzzle velocity drops to 90% at 5 km for the same 
drag coefficient exponent.  

Similarly, the change in time-of-flight due to change in muzzle velocity for a fixed range can be 
determined using equations 25–27.  The form of the solution allows the change in time-of-flight 
due to change in muzzle velocity easily computed using the existing velocity relationships shown 
in equations 21 and 22.  Although the drag coefficient exponent does not explicitly appear in 
equation 42, the effect is implicitly included in the velocity variation 0V/V . 
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The Taylor’s series form for the change in time-of-flight due to change in muzzle velocity can be 
determined using equation 39 and is shown in equation 43.
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Figure 8.  Rate of change of impact velocity with change in muzzle velocity as a function of scaled range. 
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Figure 9 shows a plot of the scaled change in time-of-flight with change in muzzle velocity as a 
function of scaled range.  For shorter ranges, the results are relatively independent of the drag 
coefficient exponent.  As shown in equation 43, to leading order, the results are independent of 
both the drag coefficient exponent and muzzle retardation.  Typically, the change in time of 
flight with change in muzzle velocity is relatively small and by itself is relatively unimportant.  
However, the change in time of flight due to change in muzzle velocity can have a measurable 
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Figure 9.  Scaled rate of change of time-of-flight with change in muzzle velocity as a function of scaled 
range. 

impact on the dispersion of the projectile.  The effect of the variability of muzzle velocity on 
impact location is considered in a later section. 

3.3 Change in Impact Velocity and Time-of-Flight Due to Change in Muzzle Retardation 

In a similar manner, changes in the muzzle retardation can have an effect on the impact velocity 
and time-of-flight for a projectile.  Change in the muzzle retardation can result from changes in 
the atmospheric density, drag coefficient, and mass as seen in equation 20.  Changes in the 
muzzle retardation are also produced by changes in the muzzle velocity, although these effects 
are implicitly included in the results presented in the previous section.  Using the velocity-range 
relations in equations 21 and 22, it can be shown that the change in impact velocity with change 
in muzzle retardation for a fixed range has the form shown in equation 44.   
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A Taylor’s series expansion for the change in impact velocity with change in retardation can be 
found as follows. 
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The Taylor’s series expansion represents the exact solution for n = 1/j where j is a positive non-
zero integer.  For n = 1, the change in impact velocity with change in muzzle retardation 
increases linearly with range.  This is expected since the velocity history itself varies linearly 
with range and the retardation is constant when n = 1. 

The scaled rate of change of impact velocity with change in retardation as a function of scaled 
range is shown in figure 10.  The results show a linear variation with range for n = 1, with the 
rate of change of impact velocity decreasing as the drag coefficient exponent decreases.  

Figure 10.  Scaled rate of change of impact velocity with change in muzzle retardation as a function of 
scaled range. 

Similarly, the change in time-of-flight with change in muzzle retardation for a fixed range can be 
derived and has the form shown in equation 46. 
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A Taylor’s series expansion for the change in time of flight with change in retardation can be 
found as shown in equation 47. 
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Figure 11 shows the scaled rate of change of time-of-flight with change in muzzle retardation as 
a function of scaled range.  The largest change is observed when the drag coefficient exponent is 
the largest. 

4. Solution of the 2-DOF Equations 

The 1-DOF point-mass equations provide useful information about the flight behavior of direct- 
fire munitions.  However, there are aspects of the flight trajectory that require the vertical 
equation of motion and the effect of gravity to be considered.  In this case, the 2-DOF equations, 
shown previously in equations 1–4, must be solved.  Exact analytical solution of the 2-DOF 
equations can be obtained when the drag coefficient varies with the inverse of the Mach number 
(n = 1 variation as previously shown in equation 10).  In this case, the coefficients in equations 1 
and 2 are constant, as shown in equations 48 and 49, and the governing equations are a set of 
first order linear ordinary differential equations with constant coefficients. 
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Figure 11.  Scaled rate of change of time-of-flight with change in muzzle retardation as a function of 
scaled range. 
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The solution is shown below.  The solution is composed of the homogeneous solution that 
consists of the 1-DOF solution resolved in the x- and y-directions plus the particular solution 
which includes the effect of gravity on the trajectory. 
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The particular solution for the vertical displacement, equation 59, represent the downward 
deflection in the trajectory due to gravity or “gravity drop.” 

For direct-fire applications, approximate (but very accurate) solutions to the 2-DOF equations 
can be obtained when the drag coefficient has the variation shown in equation 10.  In this case, 
equations 1 and 2 can be rewritten as shown in equations 60 and 61. 
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These equations are nonlinear and coupled.  Within the constraints of the approximations that 
were previously made for direct-fire munitions, the velocity variation in the coefficients of 
equations 60 and 61 can actually be expressed as a function of time using the results from the 
solution of the 1-DOF equation (equation 23).   
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Essentially, this assumes that the contribution from gravity in the total velocity can be ignored.  
This uncouples the equations and effectively makes the equations linear, although the 
coefficients are functions of time.  Because the equations are linear, solutions for the equations 
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can be obtained by seeking the homogeneous and particular solutions of the ordinary differential 
equations.  The solution has the same form as equations 52–55, and the expressions for s , V , 

P
ys , and P

yV  are shown in equations 65–72 for various values of the drag coefficient exponent n. 
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Here, solutions for various values of the drag coefficient exponent are presented.  The solutions 
for n = 2 are included for completeness, although this value of the drag coefficient exponent is 
larger than the drag coefficient exponents examined here.  Again, the solution of the 2-DOF 
equations can be characterized as the 1-DOF solution resolved in the x and y directions 
(homogeneous solution) plus the gravity drop term (particular solution). 

In the previous equations, solutions have been determined as a function of the time-of-flight.  
Using these solutions, it is also possible to obtain solutions as a function of range by inverting 
the expressions for range as a function of time-of-flight.  From equation 54,  
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For flat fire, the angle 0θ  is small and 1cos 0 ≅θ . 
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The approximation shown in equation 74 removes the dependency of the two range coordinates 
on the angle of elevation.  This is an important approximation because, when the 2-DOF 
equations are inverted, many of the resulting expressions as a function of range become 
independent of gun elevation angle.  The exact expression in equation 73 can be retained without 
too much additional complexity in the resulting expressions.  However, the implicit dependence 
of the gun elevation angle within the resulting expressions appears unnecessary for the 
applications examined here and the approximation is equation 74 is utilized in the remaining 
analysis. 

Using equation 74 and equations 57, 66, and 67 can inverted to obtain expressions of the  
time-of-flight as a function of range which are essentially equivalent to equations 25–27. 
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Equation 73 can be combined with equation 55 to obtain an expression for the vertical 
displacement along the trajectory as a function of range. 
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Using equations 75–77, the particular solution P
ys  (or gravity drop) can written in term of range 

instead of time-of-flight. 
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Similarly, expressions for xV  and yV  can be written in terms of range by expressing V  and P
yV  

as functions of range using equations 75–77.

.
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 0x cosVV θ=  , (83) 
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Alternatively, it is also possible to obtain solutions by integrating the equations of motions with 
range as the independent variable.  The solution has the same form as the results just presented. 

The vertical velocity component due to gravity (equations 87–90) can be compared with the total 
velocity in the absence of the gravity (equations 85 and 86).  Figure 12 shows the two velocity 
components as a function of the scaled range.  The vertical velocity due to gravity is shown for a 
fixed value of the gravitational scaling factor of –0.102.  This value corresponds to the 

,

. 
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Figure 12.  Comparison of the total velocity in the absence of gravity with the vertical velocity due to 
gravity as a function of scaled range. 

gravitational scaling factor for a notional kinetic-energy (KE) projectile with a muzzle velocity 
of 1600 m/s and a retardation of 60− (m/s)/km.  The vertical velocity is less than 10% of the 
total velocity in the absence of gravity even to very large ranges displayed here.  For zero gun 
elevation angle, the square root of the sum of the squares of the horizontal and vertical velocity 
components shows that the contribution of the vertical velocity due to gravity to the total 
velocity is less than a half of a percent.  The results justify the assumption of ignoring the 
velocity component due to gravity when evaluating the coefficients of equations 60 and 61.  The 
gravity effect shown in figure 12 is relatively large for the munitions of interest here.  For the 
notational HEAT and training rounds previously discussed, the expected vertical velocity due to 
gravity is 2.5 to 6 times less than for that shown in figure 12. 

The particular solutions for the vertical displacement as a function of time (equations 59 and  
70–72) represent the downward deflection in the trajectory due to gravity or “gravity drop.”  The 
gravity drop term can be expanded in a Taylor’s series as shown in equation 91. 
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The expansion is valid for all values of n including n = 1.  The leading order term is the 
deflection due to the gravitation effect of a body in a vacuum )gt2/1( 2− .  There are additional 
higher-order terms in the gravity drop which account for the drag effect.  The drag coefficient 
exponent appears in the fourth order and higher terms of the expansion. 

Figure 13 shows the gravity drop as a function of scaled time-of-flight.  The gravity drop 
increases with increasing time-of-flight.  The results show that the gravity drop is relatively 
insensitive to the value of the drag coefficient exponent.  The results also show that the gravity 
drop can be well approximated within the range of interest using the first two terms of 
equation 91 (as shown in equation 92).  (This is the exact solution for n = 1.5.)  This form of the 
gravity drop includes both the gravity drop in vacuum as well as the first-order retardation effect. 

 ⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
−⎟

⎠
⎞

⎜
⎝
⎛+−−≅−

3
0

0

2
0dropg )tt(

ds
dV

6
1)tt(

2
1gs  . (92) 

Figure 13.  Gravity drop as a function of scaled time-of-flight. 

The gravity drop as a function of range can also be expanded in a Taylor’s series as shown in 
equation 93. 
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The first term of the expansion represents the vacuum trajectory result.  The second term 
includes the lowest-order corrections from the cubic term of equation 91, as well as from longer 
time-of-flight produced by the retardation effect.  Equation 93 shows that the drag coefficient 
exponent is a higher-order term in the expansion as a function of range. 

Figures 14 and 15 show the gravity drop as a function of scaled range.  The gravity drop 
increases with increasing range and the results are relatively insensitive to the value of the drag 
coefficient exponent.  For short ranges, the gravity drop can be well represented by the first two 
terms of equation 93 (as shown in equation 94). 
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In many direct-fire ballistic applications (jump tests as part of KE projectile accuracy testing is 
one example), the gravity drop is estimated using the gravity drop in vacuum (the first terms of 
equations 91 or 93).  The results shown here demonstrate that with little additional effort, this 
estimate can be improved, in some cases significantly, using equations 92 or 94, provided the 
muzzle retardation of the round is known.  If the drag coefficient exponent is known, these 
estimates can be further improved using additional terms of the expansions or the exact solution.   

The solutions of the 2-DOF equations can also be used to predict the gun elevation angle 0θ  
required to reach a target at range.  Equation 78 can rearranged to yield an expression for the gun 
elevation angle 0θ .  Knowing the vertical and horizontal displacement of the target from the gun 
and the gravity drop as a function of range (equations 79–82), equation 95 can be solved to 
determine the gun elevation angle. 
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Figure 14.  Gravity drop as a function of scaled range. 

Figure 15.  Gravity drop as a function of scaled range (close-up).
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Figure 16 shows the predicted gun elevation angle as a function of the scaled range when the 
target is at the same vertical location as the gun.  The gun elevation angle is independent of the 
drag coefficient exponent at shorter ranges.  Also shown is the firing tables data for the M829, 
M865, and M830 projectiles for ranges to 3 km.  The predicted results are consistent with the 
firing table data for these rounds.  The results imply that the gun elevation angle can be predicted 
for a significant portion of the useful range using only the projectile muzzle velocity and muzzle 
retardation because the drag coefficient exponent has little influence.  Also shown are the results 
obtained assuming a vacuum trajectory.  The vacuum trajectory results are a limiting case at 
short range, however, by including the retardation effect, the gun elevation angle can be 
predicted with better accuracy to longer ranges than using the vacuum trajectory. 

Figure 16.  Scaled gun elevation as a function of scaled range. 

The angle of inclination of the trajectory at impact can also be determined using the current 
analysis.  This angle can be important for terminal guidance and terminal ballistic effects as well 
as for determining the variability of the vertical impact location due to errors in estimating range 
to target.  Using equation 78, the slope of the trajectory at impact can be determined from the 
derivative with respect to range as shown in equation 96. 
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By virtue of the chain rule, the last term of equation 96 can be evaluated as shown in 
equation 97. 
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Applying the small angle approximation 1cos 0 ≅θ  to equation 97 yields equation 98. 
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Figure 17 shows the predicted trajectory impact angle as a function of the scaled range when the 
target is at the same vertical location as the gun.  For shorter ranges, the trajectory impact angle 
is independent of the drag coefficient exponent and is nearly equal to the gun elevation angle 
consistent with the classical vacuum trajectory result.  As the range increases, both the trajectory 
impact angle and the difference between the gun elevation angle and the trajectory impact angle 
increase.   

Figure 17.  Scaled trajectory impact angle for flat fire as a function of scaled range. 
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4.1 Change in Impact Location Due to Variability in Muzzle Velocity and Muzzle 
Retardation 

As previously discussed, variability in the muzzle velocity and muzzle retardation (typically 
through variability in the drag coefficient) can have a measurable effect on the impact dispersion 
of the projectile.  These effects are typically manifested through the change in time of flight.  
The 2-DOF equations can be used to quantify these effects.  Typically, the variation of the 
vertical impact location is desired at a fixed range and gun elevation angle.  In this case, the 
equation 78 provides a convenient form to work with.  The variation in vertical impact location 
with change in muzzle velocity or muzzle retardation can be determined analytically by taking 
derivatives of the vertical impact location with respect to muzzle velocity or muzzle retardation.  
Here, only the gravity drop term in equation 78 needs to be considered since the gun elevation 
and range are assumed constant.  To obtain the variation in these quantities for a fixed range, the 
gravity drop as a function of range (equations 79–82) should be used to obtain the proper 
derivatives. 
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These derivatives have been computed and are shown in the appendix. 

An alternative approach for predicting the variability of the impact location with muzzle velocity 
or muzzle retardation is to perform discrete computations for the different values of the muzzle 
retardation or muzzle velocity using equation 78.  The differences in the impact location can then 
be assessed or, alternatively, the discrete forms of the appropriate derivatives evaluated.  This 
may be the preferred approach for practical applications due to the complicated form of the 
equations in the appendix.  However, if the muzzle velocity is varied, there is a small effect on 
the muzzle retardation that should be considered because the drag coefficient varies with Mach 
number.  Equation 101 shows the appropriate value of the retardation if the muzzle velocity is 
varied when performing these computations. 
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Note that for n = 1, the muzzle retardation does not change with muzzle velocity.  This is 
consistent with the results presented previously in equation 35. 
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The variability of the impact location with muzzle velocity or muzzle retardation as a function of 
range can also be assessed using the series expansion in equation 93 and are shown in 
equations 102 and 103. 
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The results in equation 103 include the variation in the muzzle retardation due to change in 
muzzle velocity. 

Figures 18 and 19 show the variation in impact location with changes in muzzle retardation, 
while figures 20 and 21 show the variation in impact location with changes in muzzle velocity.  
The variation in the impact location with muzzle velocity or muzzle retardation increases with 
increasing range.  For shorter ranges, the results are relatively independent of the drag coefficient 
exponent and the first term of the expansions in equations 102 and 103 can be used to estimate 
the variability in impact location with muzzle velocity and muzzle retardation.  For increased 
accuracy, additional terms in the series may be required.  Alternatively, the analytical 
expressions in the appendix can be evaluated or equations 79–82 can be applied to determine the 
variability in impact location for different discrete values of the muzzle retardation or muzzle 
velocity. 

5. Crosswind Deflection 

The 2-DOF equations allow the two-dimensional trajectory of a projectile to be characterized.  
There are also additional physical effects that cause the projectile’s trajectory to deviate from a 

.

. 
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Figure 18.  Scaled rate of change of vertical impact location with change in muzzle retardation as a 
function of scaled range. 

Figure 19.  Scaled rate of change of vertical impact location with change in muzzle retardation as a 
function of scaled range (close-up). 
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Figure 20.  Scaled rate of change of vertical impact location with change in muzzle velocity as a 
function of scaled range. 

Figure 21.  Scaled rate of change of vertical impact location with change in muzzle velocity as a 
function of scaled range (close-up). 
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purely two-dimensional motion.  These include the crosswind drift and the drift produced by the 
yaw of repose that results from the interaction of the projectile’s spin and the curvature of the 
trajectory.  The drift produced by the yaw of repose is relatively small for most direct-fire 
munitions and, although there are aspects of the current analysis that are useful for estimating the 
drift, the magnitude of the drift requires additional detailed information about the aerodynamics 
of the munition that are beyond the scope of the current analysis. 

The crosswind drift is, however, much more important for direct-fire munitions and produces a 
deflection horizontally away from the desired impact location in the direction of the crosswind 
for unboosted munitions whose velocity decreases throughout flight.  The crosswind drift is also 
relatively easily predicted using the results presented here.  The analysis requires the 3-DOF 
equations to be considered.  However, this analysis has already been performed (14) and a 
relatively simple and very accurate expression for the crosswind drift is available and is shown in 
equation 104. 
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Essentially, the crosswind deflection is proportional to the difference in actual time-of-flight and 
the hypothetical time-of-flight in a vacuum.  Using the current analysis, the time-of-flight for 
direct-fire munitions can be easily determined using equations 25–27.  Combining equation 104 
and equations 25–27 yields an important result because it shows, for a constant crosswind, the 
crosswind deflection is a function of the muzzle velocity, muzzle retardation, and, to a much 
lesser extent, the exponent determining the shape of the drag curve.  This has important 
implications for projectile design because the crosswind sensitivity of a munition can only be 
significantly effected through two design variables:  muzzle velocity and muzzle retardation. 

Using the expansion for time-of-flight presented in equation 39, the expansion for the crosswind 
deflection is easily obtained. 
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The lowest-order approximation to the wind sensitivity is easily obtained from equation 105 as 
shown in equation 106.  To lowest order, the wind sensitivity is independent of the drag 
coefficient exponent. 

 2
0

2
0xx

0

z
0zz

V

)ss(
ds
dV

2
wss

−
⎟
⎠
⎞

⎜
⎝
⎛−=−  . (106) 

The crosswind deflection vs. scaled range is shown in figure 22.  The crosswind deflection 
increases with increasing range.  There is a relatively minor dependence on the shape of the drag 
curve with crosswind deflection increasing slightly with increase values of the drag coefficient 
exponent.  

Figure 22.  Crosswind deflection as a function of scaled range. 

Similar simple expressions for predicting the vertical deflection due to range wind (tail or head 
wind) can also be found (14), and the range wind deflection can be related to the muzzle 
velocity, muzzle retardation, and exponent defining the shape of the drag curve using the results 
presented in the current report.  However, it is also recognized that the range wind deflection is 
also much smaller than the crosswind deflection (14) and is generally ignored.  For this reason, 
these equations are not presented here, although their development is rather straight-forward 
using the current analysis. 

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5

 

n=1
n=0.75
n=0.5
n=0.25
n=0
Leading Order

z

0zz

0 w
)ss(

ds
dV −

⎟
⎠
⎞

⎜
⎝
⎛−

0

0xx

0 V

)ss(

ds
dV −

⎟
⎠
⎞

⎜
⎝
⎛−



 42

6. Validation 

Validation of the analytical results previously presented has been performed by comparisons 
with numerical trajectory predictions for actual direct-fire munitions.  For the current study, the 
6-DOF trajectory option within the commercially-available aerodynamic analysis package 
Prodas was utilized. 

Four projectiles were selected to perform the validation study.  These include the 120-mm 
M829A1 KE projectile, the 120-mm M865 training round for KE projectile, and the 120-mm 
M830 and M830A1 HEAT munitions.  The M829 presents a typical modern high mass, low drag 
KE projectile.  The M865 and M830 are physically very different projectiles, with dissimilar 
muzzle velocities and retardation.  However, the retardation divided by the muzzle velocity is 
similar.  Thus, both rounds have a similar nondimensional range parameter for a given 
dimensional range.  The M865 has a cone-cylinder fore body with a flared after body stabilizer.  
The M830 has a nearly full bore cylindrical mid-section with a spiked nose and a finned tail 
boom.  Also included is the M830A1 HEAT munition.  This round has a higher muzzle velocity 
than the M830 and lower retardation.  The M830A1 has a subcaliber cylindrical mid-section with 
a conical nose and a finned tail boom.  The muzzle velocity, muzzle retardation, and range 
scaling parameter for each of the projectiles is shown in table 4.  The wide differences in muzzle 
velocity and muzzle retardation allow the effect of both of these parameters to be clearly 
illustrated in the following results.  The exponents defining the shape of the drag curve used in 
the validation study for the M829A1, M865PIP, and M830A1 are listed in table 1.  A drag 
coefficient exponent of 0.65 was used for the M830 munition to represent the shape of the drag 
curve over a range of Mach numbers between Mach 1.1 and 3.3. 

Table 4.  Projectile characteristics for validation study. 
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(1/km) 
M829A1 1580   68 0.043 
M865PIP 1700 343 0.202 
M830 1140 273 0.239 
M830A1 1410 209 0.148 

Most of the previous analyses examining the power-law drag formulations (3, 7, and 11) have 
focused on axisymmetric projectiles.  The projectile geometries selected here are very diverse 
and show the potential of the method for addressing a wide range of projectile configurations. 

Results for all four projectiles were obtained using existing inventoried Prodas models.  For 
consistency, the drag variation with Mach number obtained from the U.S. Army Firing Tables 



 43

Branch “aeropack” data was substituted for the existing drag model within the inventoried 
models.  The difference in the drag between the two sets of models was less than 4% over the 
expected Mach number regime for a 3-km flight, except for the M830 which showed differences 
of up to 8% near the end of the trajectory.  Some additional results were obtained using the 
unmodified inventoried models.  These additional results are discussed at the end of the 
validation results section. 

Trajectory predictions were obtained for the baseline flight conditions for a 3-km flat-fire flight 
for each of the four munitions.  Figure 23 show the fractional remaining velocity as a function of 
range.  The degree of velocity loss among the four munitions increases as the ratio of retardation 
to velocity increases.  The M865 and M830 have relatively similar performance because this 
ratio is similar for both rounds.   

Figure 24 shows the time-of-flight as a function of range.  For short ranges, the time-of-flight is 
dominated by the muzzle velocity and the shortest times-of-flight are produced by the highest 
muzzle velocities.  However, as the range increases, the retardation has a more important role.  
For example, the M865, which has the highest muzzle velocity, has the lowest time of flight at 
short range, but has a time of flight similar to the M830A1 at 3 km. 

Figure 23.  Fractional remaining velocity vs. range, M865PIP, M829A1, M830A1, and M830. 
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Figure 24.  Time-of-flight vs. range, M865PIP, M829A1, M830A1, and M830. 
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Figure 25.  Gravity drop vs. range, M865PIP, M829A1, M830A1, and M830. 

Figure 26.  Trajectory to 3 km, M865PIP, M829A1, M830A1, and M830. 
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Figure 27.  Gun elevation angle vs. range, M865PIP, M829A1, M830A1, and M830. 

Figure 28.  Impact angle vs. range, M865PIP, M829A1, M830A1, and M830. 

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000

Range - Meters

G
un

 E
le

va
tio

n 
- (

M
ils

)

M865-Prodas
M865-Analytical
M829A1-Prodas
M829A1-Analytical
M830A1-Prodas
M830A1-Analytical
M830-Prodas
M830-Analytical

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

0 500 1000 1500 2000 2500 3000

Range - Meters

Im
pa

ct
 A

ng
le

 - 
(M

ils
)

M865-Prodas
M865-Analytical
M829A1-Prodas
M829A1-Analytical
M830A1-Prodas
M830A1-Analytical
M830-Prodas
M830-Analytical



 47

to the gun elevation angle, but opposite in sign, as predicted from the vacuum trajectory result.  
As the range increases, the magnitude of the impact angle increases relative to the launch angle 
as a result of the increased role of the retardation in reducing the forward velocity of the 
projectile.  Impact angle is directly related to the sensitivity of the projectile’s vertical impact 
location to uncertainty of range-to-target estimates (also known as ranging error).  The results 
show that the M829A1 is much less sensitive to the range estimates than the M830.  The results 
show that a 50-m error in range estimate for the M830 results in a 2-m vertical offset in target 
impact location at 3000-m range. 

Figure 29 shows the wind drift as a function of range for 10-m/s crosswind.  While this is a 
relatively large crosswind velocity, the results scale linearly with wind velocity as shown in 
equation 104.  The drift of the M829A1 is relatively small compared with the other rounds as a 
result of its high velocity and low retardation.  Despite its higher muzzle velocity, the M865 has 
greater wind sensitivity than the M830A1 due to its increased retardation.  Although the M830 
has lower retardation than the M865, it has a larger wind sensitivity due to its lower velocity. 

Figure 29.  Wind drift vs. range for 10 m/s crosswind, M865PIP, M829A1, M830A1, and M830. 
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Additional results were obtained to examine the variability of the impact location to variations in 
muzzle velocity or muzzle retardation.  For the respective sensitivity studies, the muzzle velocity 
was increased by 20-m/s and the retardation was increased by 5%.  Although variations this large 
are not common for these munitions, large values were required to obtain sufficient significant 
digits from the Prodas output to properly determine the difference in impact location between the 
baseline trajectory and the perturbed trajectory.  The variation of the impact location with 
variation in muzzle velocity appears to be relatively linear with respect to the incremental 
changes shown, so the results can be scaled to determined the relative change in impact for 
smaller changes in muzzle velocity or muzzle retardation. 

Figures 30 and 31 show the difference in time-of-flight and difference in vertical impact location 
as a function of range produced by a 20-m/s difference in muzzle velocity.   Increasing the 
muzzle velocity decreases the time-of-flight and produces upward movement of the target impact 
location.  At ranges less than 1 km, the variability in impact location is relatively small, but 
increases, in some cases, significantly with range.  The results show that the deviation of the 
impact location increases with increasing muzzle retardation and decreasing muzzle velocity. 

Figure 30.  Change in time-of-flight vs. range for 20-m/s increase in muzzle velocity, M865PIP, M829A1, 
M830A1, and M830. 
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Figure 31.  Change in vertical impact location vs. range for 20-m/s increase in muzzle velocity, 
M865PIP, M829A1, M830A1, and M830. 
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Figure 32.  Change in time of flight vs. range for 5% m/s increase in muzzle retardation, M865PIP, 
M829A1, M830A1, and M830. 

Figure 33.  Change in vertical impact location vs. range for a 5% increase in muzzle retardation, 
M865PIP, M829A1, M830A1, and M830.
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the measured drag curve were present between the launch Mach number and Mach 2, these 
differences increase to about 8% at the terminal Mach number.  In contrast, the M865 has a 
similar variation in velocity on a percentage basis, but the assumed form of the drag curve agreed 
with the measured drag curve to within 1%.  The M865 terminal Mach number was also 
somewhat higher, perhaps in a regime where the power-law drag variation is more applicable.  
The results generally validate the approach of representing the drag with a power-law approach.  

Predictions were also obtained with the unmodified inventoried Prodas models for each of the 
four projectiles.  Comparisons were made with the analytical results obtained previously.  
Although the results were generally in excellent agreement with the analytical model, some small 
differences in the results were noted.  Figure 34 shows the velocity history as a function of range 
for each of the four projectiles and presents comparisons of the previous analytical results with 
the numerical results obtained using the unmodified inventoried Prodas files.  Comparisons 
between figures 23 and 34 show that the numerical results for the M865 in figure 34 exhibit 
slightly less velocity fall-off relative to the analytical results than the results shown in figure 23.  
The opposite trend is observed for the M830A1.  The differences between numerical results in 
figures 23 and 34 are purely due to the slight differences in the drag curves used in the numerical 
predictions.  It is clear that uncertainty in the projectile drag effects trajectory predictions of both 
the analytical and numerical methods.  For the numerical method, uncertainty is contained in the 
drag curve itself.  For the analytical method, the same uncertainty exists within the muzzle 
retardation and exponent defining the same of the drag curve.  (A similar argument can be made 
if there are uncertainties associated with the muzzle velocity.)  The important point here is that 
although the power-law drag variation represents an approximation of a more general drag curve, 
any resulting error from this approximation in the trajectory prediction will only be meaningful if 
the drag curve itself is well determined.  The results presented here indicate that for these 
projectiles, the errors from assumptions made for the analytical method are less than the errors 
associated with the uncertainty in the drag curve. 

The results of this section provide validation of the accuracy of the method.  However, it should 
be again emphasized that the significant value of the method is its simplicity.  The results 
presented here were obtained using only three parameters to describe the projectile: the muzzle 
velocity, the muzzle retardation, and the exponent defining the shape of the drag curve.  Using 
these parameters, a significant range of performance metrics were accurately determined.  The 
relative effect of these parameters is clearly and easily extracted from the analysis. 
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Figure 34.  Fractional remaining velocity vs. range, M865PIP, M829A1, M830A1, and M830 obtained 
with original Prodas inventoried models. 

7. Conclusion 
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one considers the uncertainty (or naturally occurring variability) associated with the drag 
coefficient (or even muzzle velocity) for a given munition.   

There are numerous applications for the method.  The simplicity and accuracy of the method 
make it appropriate for use in preliminary design studies where the prediction of munition 
performance may be desired but where details of the design have not been completely defined.  
The method also has important implications for munition accuracy testing and analysis.  The 
method provides a formal framework for constructing error budgets, and determining variance 
components and their associated scale factors.  The method also allows for improved analysis of 
target impact data from jump tests by allowing improved corrections due to gravity drop and 
variability due muzzle velocity and retardation.  The technique may also be useful for direct-fire 
smart munition guidance, navigation, and control (GN&C) applications where speed and 
simplicity of the GN&C algorithm may reduce the demands on the onboard electronic package. 
Some of these applications are currently being exploited. 
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Appendix.  Variation in Impact Location With Change in Muzzle Retardation 
and Velocity Data 

The variation of impact location for a fixed range with change in muzzle retardation or muzzle 
velocity can be obtained by computing the derivatives in equations 99 and 100.  The results are 
shown in the following equations. 

A.1  Variation in Impact Location With Change in Muzzle Retardation 

The following equations show the variation in impact location with change in muzzle retardation 
as a function of range for various values of the drag coefficient exponent.   
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A.2  Variation in Impact Location With Change in Muzzle Velocity 

The following equations show the variation in impact location for a fixed range with change in 
muzzle retardation as a function of range for various values of the drag coefficient exponent.  
The variation in the muzzle retardation with change in muzzle velocity is also required and can 
be obtained using equation A-5. 
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List of Symbols, Abbreviations, and Acronyms 

DC   Drag coefficient 

0VDC  Drag coefficient evaluated at the muzzle velocity 

D   Reference diameter 

g   Gravitational acceleration 

j   Order of term in Taylor’s series expansion  

m   Projectile mass 

M   Mach number 

n  Exponent defining shape of the drag vs. Mach number curve 

s   Arc length along projectile trajectory 

s   Arc length along trajectory in absence of gravity 

dropgs −  Gravity drop 

yx s,s  Horizontal and vertical displacement along trajectory 

P
ys   Particular solution associated with vertical displacement (or gravity drop) 

0y0x s,s  Initial horizontal and vertical displacement along trajectory 

zs   Out-of-plane displacement along trajectory (normal to x-y plane) 

0zs   Initial out-of-plane displacement along trajectory 

refS  Reference area, 
4
DS

2

ref
π

=  

t   Time 

0t   Initial time 

V  Total velocity 

V   Velocity along trajectory in absence of gravity 

0V   Muzzle velocity 
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newV  Perturbed value of velocity in velocity sensitivity analysis 

yx V,V  Horizontal and vertical component of velocity 

P
yV   Particular solution associated with vertical velocity 

⎟
⎠
⎞

⎜
⎝
⎛

ds
dV  Instantaneous value of retardation along trajectory 

0ds
dV

⎟
⎠
⎞

⎜
⎝
⎛  Muzzle retardation 

zw   Crosswind velocity 

Greek Symbols 

0θ   Initial gun elevation angle 

Iθ   Trajectory impact angle 

ρ   Atmospheric density 
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